Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity.

نویسندگان

  • A Freiburg
  • K Trombitas
  • W Hell
  • O Cazorla
  • F Fougerousse
  • T Centner
  • B Kolmerer
  • C Witt
  • J S Beckmann
  • C C Gregorio
  • H Granzier
  • S Labeit
چکیده

Titins are megadalton-sized filamentous polypeptides of vertebrate striated muscle. The I-band region of titin underlies the myofibrillar passive tension response to stretch. Here, we show how titins with highly diverse I-band structures and elastic properties are expressed from a single gene. The differentially expressed tandem-Ig, PEVK, and N2B spring elements of titin are coded by 158 exons, which are contained within a 106-kb genomic segment and are all subject to tissue-specific skipping events. In ventricular heart muscle, exons 101 kb apart are joined, leading to the exclusion of 155 exons and the expression of a 2.97-MDa cardiac titin N2B isoform. The atria of mammalian hearts also express larger titins by the exclusion of 90 to 100 exons (cardiac N2BA titin with 3.3 MDa). In the soleus and psoas skeletal muscles, different exon-skipping pathways produce titin transcripts that code for 3.7- and 3.35-MDa titin isoforms, respectively. Mechanical and structural studies indicate that the exon-skipping pathways modulate the fractional extensions of the tandem Ig and PEVK segments, thereby influencing myofibrillar elasticity. Within the mammalian heart, expression of different levels of N2B and N2BA titins likely contributes to the elastic diversity of atrial and ventricular myofibrils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey of the primary structure and the interspecies conservation of I-band titin's elastic elements in vertebrates.

Titin is a >3000-kDa large filamentous protein of vertebrate-striated muscle, and single titin molecules extend from the Z disc to the M line. In its I-band section, titin behaves extensible and is responsible for myofibrillar passive tension during stretch. However, details of the molecular basis of titin's elasticity are not known. We have compared the motif sequences of titin elastic element...

متن کامل

Damped elastic recoil of the titin spring in myofibrils of human myocardium.

The giant protein titin functions as a molecular spring in muscle and is responsible for most of the passive tension of myocardium. Because the titin spring is extended during diastolic stretch, it will recoil elastically during systole and potentially may influence the overall shortening behavior of cardiac muscle. Here, titin elastic recoil was quantified in single human heart myofibrils by u...

متن کامل

The Complete Gene Sequence of Titin, Expression of an Unusual 700-kDa Titin Isoform, and Its Interaction With Obscurin Identify a Novel Z-Line to I-Band Linking System

Titin is a giant vertebrate striated muscle protein with critical importance for myofibril elasticity and structural integrity. We show here that the complete sequence of the human titin gene contains 363 exons, which together code for 38 138 residues (4200 kDa). In its central I-band region, 47 novel PEVK exons were found, which contribute to titin’s extensible spring properties. Additionally,...

متن کامل

Proposed Investigation into Titin’s Elastic Behaviour during Active Stretch

INTRODUCTION Within skeletal and cardiac muscle exists a molecular spring responsible for maintaining muscle structure, preventing stretch related damage, and contributing to the development of muscle force. This spring, called titin, has almost exclusively been associated with passive (elastic) force, that develops when muscles are stretched. However, more recent work has suggested there may b...

متن کامل

The Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model

The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 86 11  شماره 

صفحات  -

تاریخ انتشار 2000